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Artificial intelligence application 
for rapid fabrication of size‑tunable 
PLGA microparticles 
in microfluidics
Safa A. Damiati1*, Damiano Rossi2, Haakan N. Joensson3,4 & Samar Damiati5,6*

In this study, synthetic polymeric particles were effectively fabricated by combining modern 
technologies of artificial intelligence (AI) and microfluidics. Because size uniformity is a key factor that 
significantly influences the stability of polymeric particles, therefore, this work aimed to establish a 
new AI application using machine learning technology for prediction of the size of poly(d,l-lactide-
co-glycolide) (PLGA) microparticles produced by diverse microfluidic systems either in the form of 
single or multiple particles. Experimentally, the most effective factors for tuning droplet/particle 
sizes are PLGA concentrations and the flow rates of dispersed and aqueous phases in microfluidics. 
These factors were utilized to develop five different and simple in structure artificial neural network 
(ANN) models that are capable of predicting PLGA particle sizes produced by different microfluidic 
systems either individually or jointly merged. The systematic development of ANN models allowed 
ultimate construction of a single in silico model which consists of data for three different microfluidic 
systems. This ANN model eventually allowed rapid prediction of particle sizes produced using various 
microfluidic systems. This AI application offers a new platform for further rapid and economical 
exploration of polymer particles production in defined sizes for various applications including 
biomimetic studies, biomedicine, and pharmaceutics.

Artificial intelligence (AI) has gained substantial recognition in numerous fields, such as pharmaceutics1,2, 
engineering3, education4, and many others5–7. Machine learning (ML) is a type of AI in which computers learn 
and ultimately perform tasks. One machine learning approach is artificial neural networks (ANNs) which are 
inspired by biological neurons. The typical ANN structure consists of three layers: input, hidden, and output 
layer. The process of ANN learning occurs through iterative representation of examples. The inputs are multi-
plied by connection weights. The information is then summed and transferred to the hidden layer using certain 
activation functions which ultimately send the results to the output layer8. ANNs are powerful machine learn-
ing tools for modelling nonlinear relationships which are frequently encountered in diverse research areas and 
industrial settings9,10.

AI can be utilized in synthetic bioarchitecture to design biosynthetic models that mimic natural biological 
membranes. Biomimicry facilitates the systematic investigations of biological membranes complexities and heter-
ogeneities and supports generation of potential platforms for drug delivery11. A number of biomimetic membrane 
models have been developed over the last century such as Langmuir monolayers, supported lipid membranes, and 
vesicles12. Polymeric vesicles are promising artificial cell models with several advantages such as hydrophilicity, 
high stability, controllable physicochemical properties, prolonged circulation time, controlled release properties, 
and low cost13–15. Poly(d,l-lactide-co-glycolide) (PLGA) is a widely used synthetic polymer that is approved by 
the FDA due to its biosafety, biocompatibility, and biodegradability16. Currently, there are about 20 PLA/PLGA-
based products approved by FDA and the European Medicines Agency (EMA) that are available on market and 
have been used as delivery vehicles for drugs, proteins and numerous macromolecules17–19.
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Generation of uniform particles with well-controlled properties is a challenging task. Microfluidic techniques 
address limitations of bulk methods. Microfluidic devices enable the production of microparticles with high 
monodispersity, precisely tunable structures, and superior encapsulation efficiency20–26. Although the microfluidic 
generation method supports on-site and on-demand particle production, these methods usually involve extensive 
laboratory optimization. Further, it is difficult to predict the size of PLGA droplets and the particles that result 
from their drying based on non-dimensional parameters because such predictions require prior determination 
of fluid properties such as viscosity and surface tension which are difficult to ascertain27. Therefore, such predic-
tions can be much more conveniently made in silico using AI technology. A number of studies have developed 
ML models to predict droplet microfluidics parameters including nanoprecipitation of drug particles28, droplet 
stability29, as well as fluid and flow parameters30.

In the current study we aimed to develop an in silico model using ANNs to predict both the size of PLGA 
droplets and the particles resulting from their drying, which are key to microfluidics production of polymeric 
microparticles. Whereas previous studies were limited to the prediction of parameters of a single microfluidic 
system, in this study we developed ANN predictive models for droplet and particle sizes resulting from three 
diverse microfluidic systems. We developed individual ANN models for each device as well as jointly merged 
ANN models encompassing two and three microfluidic devices. The microfluidic devices generated highly 
monodisperse particles with defined sizes either in single or multiple emulsion formats (Fig. 1). Subsequently, 
the experimental data together with a set of parameters including polymer concentration, junction geometry, and 
flow rates (FR) were investigated to determine their effects on the size of generated particles both experimentally 
and using predictive ANN models. The designed ANN models in this study illustrates the possibility of rapid 
and efficient generation of PLGA microparticles in silico with tunable sizes even when various microfluidic 
systems are combined.

Figure 1.   Schematic illustration of the generation of monodisperse PLGA droplets either in a single emulsion 
format by single junction devices (A) or microfluidic devices with seven parallel junctions (B), or in a multiple 
emulsion format (C) by two sequentially coupled devices. Generated droplets were imaged at the orifice of 
the flow-focusing region in the microfluidic chips. Data generated were thereafter used to train ANN models. 
Schematic of one of the developed models (ANN-ABC) (D). AP aqueous phase, FR flow rate.



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19517  | https://doi.org/10.1038/s41598-020-76477-5

www.nature.com/scientificreports/

Results
This work presents a new machine learning application for prediction of PLGA microparticle sizes generated by 
microfluidic devices. ML microparticle size prediction models dedicated to three individual devices as well as 
more general models predicting multiple device characteristics are demonstrated. Microfluidic devices ensure 
droplet monodispersity and subsequent uniformity of microparticles sizes. The final ANN structures as well as 
the optimum activation functions for each ANN model are shown in Table1.

ML model A—single emulsions: formation of PLGA microparticles using a single‑junction 
chip.  PLGA microparticles were produced by combining a microfluidic 3D flow focusing droplet genera-
tion device containing a single droplet producing nozzle with solvent evaporation. The size of PLGA containing 
droplets were determined in-chip and the size of PLGA particles were subsequently determined following DCM 
evaporation. Generation of droplets and resulting particles with different sizes were achieved by varying the 
aqueous and DCM flow rates were inspected by microscopy (Fig. 2).

Generation of droplets of a controlled size for particle production can be easily achieved by the microfluidic 
device while adjusting the PLGA concentration and controlling the flow rates of the continuous and disperse 
phases. Increasing PLGA concentrations (from 1 to 20%) led to larger droplets and subsequent particles (Fig. 3A). 
At 1% PLGA, in the disperse phase the sizes of droplets generated ranged from 35 to 101 µm depending on input 
flow rates. The corresponding particles after DMC evaporation was 12–23 µm. Furthermore, droplets sizes were 
26–88, 44–86, 46–48 µm for 2, 10, 20% of PLGA concentrations and produced microparticles with sizes of 16–28, 
28–40, and 35–44 µm, respectively. To investigate the influence of flow rate on droplet and particle size we deter-
mined the resulting sizes in response to various flow rates for the continuous as well as the disperse phase with 
the four different concentrations of PLGA (1, 2, 10, 20%). Droplets and resulting particle sizes decreased with 
increasing aqueous phase flow rate and decreasing PLGA disperse phase flow rate. Contrarily, larger droplets 
and particles were generated at lower aqueous phase and higher PLGA dispersed phase flow rates (Fig. 3B,C). 
The diameters of the droplets and particles were tuned by changing the flow rates of the two phases, between 
10–150 µL/min for the continuous phase and 0.5–31.5 µL/min for the disperse phase. Outside of these ranges, 
the system did not produce droplets, but instead resulted in single phase or co-laminar flow.

Training of the ANN model (i.e., ANN-A) were performed using varied PLGA concentrations, flow rates 
for both aqueous and disperse phase as input variables. The resulting sizes of both droplets and particles as a 
function of these input variables that were generated by this single- junction chip were used as the outputs of 
the ANN model. The optimum ANN structure used, the correlation coefficients between predicted and meas-
ured droplet and particle sizes, and the error for all datasets used in training, testing and validating ANN-A are 
shown in Table 1. It can be noted that the ANN model developed here is simple in structure and provided highly 
accurate results. The overall correlation coefficient (r2) between the actual (experimentally observed) and the 
predicted size values of model ANN-A was 0.988 with residuals randomly scattered and typically lying in the 
range of ± 5 μm (Fig. S1). The overall r2 value represents the correlation coefficient between observed and predi-
cated values for the training, test, and validation datasets for all data including droplets and microparticles. Also, 

Table 1.   The final ANN structures, optimum activation functions, correlation coefficients, and errors obtained 
from the developed ANN models.

ANN model

ANN structure 
(input-hidden-
output layers)

Hidden 
activation 
function

Output 
activation 
function

Correlation coefficient (r2) Error

Training dataset Test dataset
Validation 
dataset Training error Test error Validation error

ANN-A 5-7-1 Tanh Identity 0.988 0.988 0.986 3.29 2.57 3.80

ANN-B 5-4-1 Exponential Identity 0.998 0.990 0.994 0.54 5.23 4.94

ANN-C 5-10-1 Exponential Tanh 0.999 1 1 0.48 0.88 0.83

ANN-AB 7-12-1 Exponential Exponential 0.969 0.945 0.948 9.05 13.49 17.09

ANN-ABC 8-9-1 Exponential Exponential 0.978 0.975 0.971 6.23 6.45 9.46

Figure 2.   Morphology of the PLGA droplets and microparticles obtained via the microfluidics technique in 
junction (in-chip, first image left), from left to right (off-chip): (1) before, (2–4) during, (5) and after DMC 
evaporation. Images show the narrow distribution of PLGA microparticles sizes after polymerization. Further, 
the size of PLGA droplets was 95.23 ± 1.79 µm and reduced to 31.29 ± 1.08 µm after DMC evaporation as 
calculated using Image J software, version 1.52a (NIH, US) [https​://image​j.nih.gov/ij/].

https://imagej.nih.gov/ij/
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the correlations between observed and predicted values for the individual datasets used were r2 = 0.988, 0.988, 
and 0.986, for training, test, and validation datasets, respectively (Fig. 4). Validation of the developed ANN was 
confirmed by the high correlation between observed and predicted values of the data in the test and validation 
datasets. The trained and validated ANN models developed here were subsequently employed in a further step 
to test an external dataset where the predictions of the sizes of the droplets or particles are required. This was 
performed using experimental data for 20 new experimental conditions, not used for the prior training, testing 
or validation of the model. The results showed highly accurate predictions with r2 = 0.99.

Interrogation of the network sensitivity analysis offered quantitative assessment of the relative importance 
of the various input features in determining the sizes of the droplets and particles. By this means, it was found 
that the order of importance of the input features for the ANN-A model was: aqueous phase flow rate > PLGA 
concentration > PLGA flow rate > droplet/particle classifier.

ML model B—prediction of PLGA microparticle sizes in a microfluidic 7‑junctions device.  Fig-
ure 5 shows the variation of the droplets and microparticle sizes as the PLGA concentration increases. The used 
chip resulted in generation of PLGA droplets with sizes ranging from 26 to 102.5 µm while microparticles have 
sizes of 7–40 µm.

Similar to MFS A, MFS B was used to train an ANN model using the experimental data, and termed ANN-B 
(Fig. 6). The optimum ANN structure used in addition to the correlation coefficients of all datasets are shown in 
Table 1. It can be noted that the ANN model developed here is simple in structure and provided highly accurate 
results. The correlation coefficient (r2) between the actual (experimentally observed) and the predicted size 
values of ANN-B model was 0.995 with residuals randomly scattered and typically lying in the range of ± 5 μm 
(Fig. S2). Also, the correlations between observed and predicted values for the individual datasets used were 
r2 = 0.998, 0.990, and 0.994, for training, test, and validation datasets, respectively. Validation of the developed 

Figure 3.   Mean PLGA droplet and microparticle sizes resulting from MFS A for various conditions. Droplets 
generated by the microfluidic 3D flow focusing droplet device with a single junction. Mean droplet and particle 
sizes versus four different concentrations of PLGA (1, 2, 10, 20%) (A); different flow rates of the continuous 
phase (QC) (B); and different flow rates of the disperse phase (QD) for PLGA solution (C).

Figure 4.   Correlation between observed and predicted droplet/particle size generated by 3D flow focusing 
droplet chip with a single junction. Results obtained from the developed ANN-A model implemented by 
Statistica v13.3. Results shown for the developed ANN-A model for the training, test, validation, and external 
datasets. The reported r2 values were calculated for each dataset including droplets and microparticles data.
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ANN was confirmed by the high correlation between observed and predicted values of the data in the test and 
validation datasets. The trained and validated ANN model was subsequently employed in a further step to test an 
external dataset where the predictions of the sizes of the droplets/particles are required using this chip. This was 
performed using experimental data for three new potential experimental conditions. The results showed highly 
accurate predictions as shown in Fig. 5. Additionally, interrogation of the network sensitivity analysis showed 
that the order of importance of the input features for the ANN-B model was: aqueous phase flow rate > PLGA 
flow rate > PLGA concentration > droplets/particle classifier.

ML model C—prediction of PLGA microparticle formation from multiple emulsions in two 
single‑junction chips.  Fabrication of multiple emulsions of PLGA microparticles was performed by two 
consecutive cross-junctions featuring flow focusing microfluidic chips placed in series. The size of the generated 
inner and outer droplets were controlled by adjusting the PLGA concentrations and the flow rates of continuous 
and dispersed phases. The sizes of the inner water droplets are between 3 and 14 µm while the outer core–shell 
PLGA droplets are between 57 and 72 µm. The final size of W/O/W emulsions after DMC evaporation are ranges 
from 30 to 45 µm. Both the resulting size of droplets and particles are dependent on PLGA concentrations and 
flow rates (Fig. 7). Further, the number and size of inner water droplets in PLGA shell can be controlled by 
changing the flow rate conditions. In the first chip, a high PLGA flow rate results in a greater number of water 
droplets in each PLGA droplet. In the second chip, higher aqueous phase flow rate results in an increase in the 
final droplets size (Fig. 8).

Similar to the previously trained ANN models above, an ANN model was trained using these data, accordingly 
and labeled as ANN-C. The optimum ANN structure used in addition to the correlation coefficients of all datasets 
are shown in Table 1. It can be noted that the overall correlation coefficient as well as the individual correlation 
coefficient values for training, test, and validations datasets are very high which may be attributed to the small 
size of data (total 12) that may lead to overfitting. However, validation of the developed ANN was confirmed by 
the high correlation between observed and predicted values of the data in the external datasets (Fig. 9). Addition-
ally, residuals randomly scattered and typically lying in the range of ± 2 μm (Fig. S3). Examination of the network 

Figure 5.   The experimental results of the size distribution of the PLGA droplets/particles before and after 
polymerization and solvent evaporation in various conditions. Droplets generated by the 3D flow focusing 
droplet chip with 7 junctions. Droplets and particles size versus different concentrations of PLGA (0.5, 1, 2.5, 
3.5, 5, 6, 7%) (A), the flow rates of the continuous phase (B), and the dispersed phase (C).

Figure 6.   Correlation between experimentally observed and predicted droplet/particle size generated by 
the flow focusing droplet chip with 7 junctions operating in parallel. Results obtained from ANN-B model 
implemented by Statistica v13.3. Data shown for Training, test, validation, and external datasets. The reported r2 
values were calculated for each dataset including droplets and microparticles data.
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sensitivity analysis showed that the order of importance of the input features for the ANN-C model was: PLGA 
concentration > aqueous phase flow rate > PLGA flow rate > type (droplets/particles).

ML model AB—a single in silico model for prediction of PLGA microparticles generated by ML 
models A and B.  To assess the ability of ANNs to predict PLGA droplet/particle sizes when different micro-
fluidics approaches jointly combined, one ANN model consisting of data obtained from models A and B for sin-
gle emulsions production was developed. Good correlation between observed and predicted values was obtained 
for training, test, and validation data sets with r2 values of 0.969, 0.945, and 0.948, respectively. In addition, r2 
value for the external dataset was 0.972. Five variables were used for training; the relative importance of these 
variables to determine the aimed output was in a decreasing order: chip type > aqueous phase flow rate > PLGA 
flow rate, PLGA concentration, and droplets/particles.

ML model ABC—a single in silico model for prediction of PLGA microparticles generated by ML 
models A, B, and C.  An ANN model consisting of the data from A, B, and C models was developed (Fig. 10). 
The optimum final ANN structure consisted of 8, 9, 1 for input, hidden, and output neurons, respectively. The 
trained model provided highly accurate predictions with r2 values for training, test, and validation datasets equal 
0.978, 0.975, and 0.971, respectively. In addition, r2 value for the external dataset was 0.953. Finally, the relative 
importance of the input variables on the prediction of droplet/microparticle sizes was, in decreasing order: chip 
type > PLGA flow rate, aqueous phase flow rate > PLGA concertation > type (droplets/particles).

In addition, interrogation of the selectivity analysis results provided insightful information on the influence 
of these variables on PLGA droplet/microparticle sizes (Fig. 11). Although the flow rate of the aqueous phase 
was an important determinant factor for the output for all single-chip ANN models, chip type was the most 
important determinant in models ANN-AB and ANNN-ABC. However, the ANN-ABC model which consists 

Figure 7.   The experimental results of the size distribution of the final PLGA multiple emulsions (W/O/W) 
before and after polymerization and solvent evaporation in various conditions. Droplets generated by two flow 
focusing chips placed in series. Droplets and particles size versus two concentrations of PLGA (2, 6%) (A), the 
flow rates of the continuous aqueous phase (B), and the dispersed phase(PLGA/DCM/surfactant) (C).

Figure 8.   Morphology of the 50 µm PLGA W/O/W droplets before DMC evaporation with 3 µm (A) and 
14 µm (B) inner water droplets.
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of more diverse data provided a new insight on the substantial importance of the flow rate of the dispersed phase 
on determining the PLGA droplet and microparticle sizes.

Discussion
We report on a new application of AI technology for predicting the sizes of monodisperse PLGA microparticles 
generated by microfluidics. The training of ANN models was based on generation of PLGA microparticles either 
as single or multiple emulsions by flow focusing microfluidics. The relationships between PLGA droplet/particle 
size and PLGA concentrations, continuous and dispersed phases, and flow rates were investigated while taking 
into account that the microfluidic chips used exhibited different characteristics involve hydrophilicity, number of 
junctions, and chip geometry. Subsequently, the experimental data were used to develop different ANN models 
that can predict the sizes of the resulting droplets and particles in silico based on key factors controlling the 
generation of microparticles in microfluidic devices.

Three different microfluidic approaches were developed in the current study to generate PLGA microparticles. 
The first approach aimed to create single PLGA microparticles utilizing a single junction 3D flow focusing chip 
with hydrophilic channels. Similarly, the second approach aimed to create single emulsions of PLGA micropar-
ticles utilizing a 3D flow focusing chip with seven parallel hydrophilic channels to achieve the highest possible 
throughput. The third approach aimed to create core–shell PLGA particles utilizing two single flow focusing 
junction chips with different hydrophilicities, in series. First water emulsion droplets were generated in PLGA/
DCM solution in the first hydrophilic chip and then delivered via FEP tubing to the second hydrophobic chip to 
generate core–shell PLGA droplets. In all these experimental models, generation of droplets and subsequently 
particles of a controlled size were achieved in the microfluidic devices while adjusting the PLGA concentra-
tions and controlling the flow rates of continuous and dispersed phases at the chip junction(s). The sizes and 
characteristics of the droplets and microparticles produced in these microfluidic devices depend on a number of 
parameters such as PLGA concentration, two or three input flow rates and the characteristics of the microfluidic 
devices. The relationships between these input parameters and the resulting droplet and particle size is complex 
with distinguishably non-linear features. The capacity of ANNs to generalize and analyze complex nonlinear 

Figure 9.   Correlation between observed and predicted droplet/particle size generated by two consecutive cross-
junctions featuring flow focusing microfluidic chips placed in series obtained from ANN-C model implemented 
by Statistica v13.3. Data are shown for training, test, validation, and external datasets.

Figure 10.   Correlation between observed and predicted droplet/particle sizes with the corresponding r2 values 
obtained from the developed ANN-ABC model implemented by Statistica v13.3. Correlations are shown for the 
training, test, validation and, external datasets for three types of microfluidic systems: MFS A, MFS B, and MFS 
C. The reported r2 values were calculated for each the dataset including droplets and microparticles data.
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relationships make ANNs suitable to model the complex and non-linear relationships in microfluidic droplet 
and microparticle production9,31. This study demonstrates a good generalization and pattern recognition ability 
in the developed ANN models.

We systematically developed a number of ANN models for in silico prediction of PLGA microparticle sizes 
formed by different microfluidics systems by training several ANNs on experimental data generated using three 
above-mentioned microfluidic chip types. Initially, each chip-related dataset was used to build a separate ANN 
model for each individual device. This approach resulted in the development of three ANN models (ANN-A, 
ANN-B, AND ANN-C) which can individually predict—with high accuracy—PLGA droplet/microparticle sizes 
generated by each microfluidic device. Subsequently, experimental data for two single microfluidic systems were 
used to train a more general ANN model (ANN-AB). The result was a single ANN model that is capable of pre-
dicting with high accuracy the sizes of droplets and microparticles formed by any of these microfluidic devices.

After successful development of these neural network models, a final step was carried out to build a general 
in silico model capable of predicting PLGA droplet and microparticle sizes generated by three microfluidics 
systems using a single ANN model. This model (named as ANN-ABC) is simple in structure with minimal 
required number of variables (i.e., chip type, PLGA concentration, flow rates of aqueous phase and dispersed 
phase, and types (droplet or particle)).

This work is to our knowledge the first to report an AI/microfluidics application utilizing several microfluid-
ics systems to develop a multi-purpose predictive model in a single in silico platform. In addition to providing 
accurate predictions for three different microfluidic devices, the trained ANN models demonstrate the potential 
extendibility of this approach, both with regard to different polymers, droplet contents and droplet producing 
microfluidics device design.

Conclusion
This study presents a new promising application of AI for rapid fabrication of PLGA microparticles with numer-
ous sizes using different microfluidic systems. This approach can save substantial time and effort in tunable 
particles generation. Five different in silico models were developed based on data extracted from three different 
microfluidic systems. The systematic development of ANN models ultimately resulted in a single in silico model 
which could accurately predict the sizes of polymeric microparticles produced by three different microfluidic 
systems. The developed ANN models provided highly accurate predictions as well as significant insights into the 
key determinants required for PLGA microparticle fabrication using microfluidics including flow rates, polymer 
concentration, and chip design. In addition to PLGA particles, this AI application can be extendable by exploring 
other types polymeric particles, and can eventually be used for well-controlled production of polymeric particles. 
Further investigations on integration of AI technologies with microfluidics may offer numerous opportunities for 
developing efficient and economical production as well as exploring future AI applications using microfluidics 
in biomimicry and pharmaceutical industry applications.

Methodology
Chemical and materials.  All microfluidic chips used were purchased from Dolomite Microfluidics 
(Royston, UK). PLGA (lactide:glycolide 75:25, Mw 76,000–115,000) (719927) and Dichloromethane (DCM) 
(34856) were purchased from Sigma Aldrich, PW11 surfactant blend (7206001) from ParticleWorks, and Aqua-
Phase contains 1–5% proprietary polymer blend (3200774) from Dolomite. Fluids were injected into the micro-
fluidic devices by Mitos P-Pumps (Dolomite, 3200016) and in-line Mitos Flow Rate Sensors (Dolomite, 3200097 

Figure 11.   Sensitivity analysis of the five ANNs developed in this study. Each bar represents the relative 
importance of the specific input feature to the neural network output. Note that ANN sensitivity analysis for the 
chip type in ANN-ABC lies beyond the X-axis scale (> 5000) and is not represented here for clarity.
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and 3200098) were used to monitor the flow rates. The aqueous flow was split off the chip using T-connector 
(Dolomite, 3000397). The size of droplets was tracked in real time under a high speed microscope (Dolomite, 
3200531) focused at the chip junction of the microfluidic chip.

Experimental systems.  Three microfluidic systems were assembled and optimized in the lab to generate 
PLGA microparticles or PLGA core–shell microparticles. In all microfluidic systems, glass microfluidics flow 
focusing devices were used. Droplet formation was monitored at the microfluidic channel junction using a soft-
ware controlled high-speed imaging system. The obtained images were used to estimate the size and uniformity 
of the generated droplets.

Microfluidic system A (MFS A).  A 3D flow focusing microfluidic device with 100 μm channels and surface 
treated for hydrophilicity (Dolomite, 3200433) was used to create PLGA droplets. The depth of the channels at 
the flow-focusing junction is 100 μm and the width is 105 μm. The chip has three inlets and one outlet (Fig. 1A). 
An aqueous solution serving as the continuous phase were injected into two inlets, while a solution of PLGA 
dissolved in DCM serving as the disperse phase was injected into the central channel of the device. The stream 
of PLGA solution broke up at the channel junction to generate monodisperse PLGA droplets due to generation 
of shear force at the narrow orifice. The droplets were collected at the outlet in the aqueous solution. The aqueous 
suspension contained 2% PW11 surfactant to lower surface tension and limit coalescence of the droplets. The 
collection vessel was pre-loaded with aqueous solution to minimize aggregation and to dilute the particles. To 
create PLGA microparticles, droplets were solidified by evaporating DCM solvent which enabled conversion of 
droplets to particles within a few minutes and leads to a decrease in the size of droplets. Parametric characteriza-
tion involved the effects of PLGA concentrations, and the flow rates of continuous and dispersed fluids on the 
size of PLGA droplets/particles were practically investigated.

Microfluidic system B (MFS B).  A 3D flow focusing microfluidic device similar to MFS A, except that the 
microfluidic chip used has seven parallel junctions (Telos 3D flow focusing device, Dolomite, 3200819). The 
channels are 100 μm wide and surface treated for hydrophilicity. The depth of the channel at the flow-focusing 
junction is 54 μm and the width is 75 μm. The Telos manifold equally distributes the two fluids, PLGA dissolved 
in DCM and the aqueous phase to the respective inlet channels across the chip to create monodisperse droplets 
of PLGA polymers in the continuous aqueous phase (Fig. 1B). A range of PLGA concentrations from 0.5 to 7.5% 
were injected to generate PLGA microparticles with a range of sizes. Continuous and dispersed phases were 
injected at substantially higher flow rates in the MFS B parallel junctions device than single microfluidic junction 
device. The flow rate range used in MFS B were approximately a factor of 70 higher than those used in MFS A.

Microfluidic system C (MFS C).  This system aimed to generate multiple emulsions using two microfluidic 
devices arranged in sequence (Fig. 1C). First a 14 μm microfluidic device with a flow focusing junction geometry 
with 14 × 17 μm (depth × width (Dolomite, 3200137) channels surface treated for hydrophobicity were used, and 
the resulting aqueous droplets in DCM/PLGA were subsequently routed to the device used in MFS A. Core–
shell microparticles with aqueous cores and PLGA shell were generate in two steps. The first step involved the 
emulsification of water as the dispersed phase in the continuous phase composed of PLGA/DCM with 0.5wt% 
CRODA Synperonic PE/F68 added as a stabilizer, followed by the emulsification of this primary emulsion in a 
second aqueous phase. The inner droplets W/O single emulsions were passed through tubing (0.25 mm ID FEP 
tubing) connecting the two microfluidic devices. The final W/O/W emulsions were composed of an inner phase 
made of water, a middle phase of PLGA in DCM with 0.5 wt% CRODA Synperonic PE/F68 and an outer phase 
made of Aqua-Phase.

In all experimental microfluidic systems, PLGA droplets were collected in the continuous phase at the outlet 
in order to allow indirect and slow evaporation of DMC which firstly dissolved into the aqueous phase, and then 
evaporated from the water–air interface resulting in a conversion of droplets to particles. In the case of multiple 
particles, DMC rapidly evaporated at the thin droplet edge and slowly within the droplet center where the con-
tinuous phase forms a thicker layer. Finally, solidified particles were washed with water and imaged.

In silico models.  Multilayer perceptron (MLP) ANNs were implemented using Statistica, version 13.3 
software32. Five ANN models were developed and labelled as ANN-A, ANN-B, ANN-C, ANN-AB, and ANN-
ABC. The first two models (ANN-A and ANN-B) were trained to predict the droplet and resulting microparticle 
sizes of two single PLGA microparticle producing microfluidic systems (MFS A and B), individually. ANN-C 
was trained to predict the droplet and resulting microparticle sizes of a multiple emulsions producing micro-
fluidic system (MFS C), individually. ANN-AB is an ANN model developed to predict the droplet and result-
ing microparticle sizes of the two single PLGA microparticle producing microfluidic systems (MFS A and B), 
simultaneously. Finally, ANN-ABC was trained to predict the droplet and resulting particle sizes of all three 
microparticle producing microfluidic systems (MFS A, B, and C), simultaneously. A total of one thousand MLP-
ANNs were trained for each model. Only ANNs with the highest correlation coefficients (r2) and lowest error 
(obtained using the sum of squares (SOS) error function) for each target device or set of devices were retained. 
The obtained errors were used as an indication of the accuracies of the predictive models.

Input data consisted of the experimental data corresponding to each microfluidic system together with differ-
ent features related to the size and the type (i.e., droplets or particles) of the generated monodisperse single, and 
multiple PLGA droplets. These data consisted of PLGA concentration, flow rates of continuous and dispersed 
phases, types (i.e., droplet or particle). For the combined models (i.e., ANN-AB and ANN-ABC), an additional 
classification feature was included, namely microfluidic device type. Only relevant features were used to design 
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the ANN models in order to keep ANN models simple, improve their generalization and pattern recognition 
capability, as well as to reduce the training time. All continuous variables were normalized to the 0–1 range.

The obtained data from the experimental microfluidic approaches was subsequently used to train, test and 
validate the machine learning models. The total numbers of data points in each dataset used for each model was 
186, 25, 12, 211, and 223 for models ANN-A, ANN-B, ANN-C, ANN-AB, and ANN-ABC, respectively. The data 
in each model has been divided into three datasets: training (~ 60%), testing (~ 20%), and validation (~ 20%) 
datasets. Furthermore, a number of additional datasets, 20, 3, 2, 23, and 25 for models ANN-A, ANN-B, ANN-C, 
ANN-AB, and ANN-ABC, respectively were used as external datasets. The external dataset include data that have 
not been seen by the ANN model previously, neither in training, nor test or validation. The distribution of the 
inputs into these datasets was carried out in a way to consider the limits and the diversities of the data. Learning 
parameters were optimized to improve the prediction capabilities of the models. This included investigating 
four activation functions for both hidden and output neurons including identity, logistic, tanh, and exponential 
activation functions. The number of nodes in the hidden layers were optimized using a trial-and-error approach. 
The output layer consisted of the results of the experimentally measured droplet sizes.
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